LON Module¶
LON
dataclass
¶
Local Optima Network (LON) representation.
A LON is a directed graph where nodes represent local optima and edges represent transitions between them discovered during basin-hopping search.
Attributes:
| Name | Type | Description |
|---|---|---|
graph |
Graph
|
The underlying igraph Graph object. |
best_fitness |
float | None
|
The best (minimum) fitness value found. |
Source code in src/lonpy/lon.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | |
n_vertices: int
property
¶
Number of vertices (local optima) in the LON.
n_edges: int
property
¶
Number of edges in the LON.
vertex_names: list[str]
property
¶
List of vertex names (node hashes).
vertex_fitness: list[float]
property
¶
List of vertex fitness values.
vertex_count: list[int]
property
¶
List of vertex counts (times visited).
from_trace_data(trace: pd.DataFrame) -> LON
classmethod
¶
Create a LON from trace data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
trace
|
DataFrame
|
DataFrame with columns [run, fit1, node1, fit2, node2] where: - run: integer run number - fit1: integer fitness of source node (scaled) - node1: string hash of source node - fit2: integer fitness of target node (scaled) - node2: string hash of target node |
required |
Returns:
| Type | Description |
|---|---|
LON
|
LON instance with constructed graph. |
Source code in src/lonpy/lon.py
get_sinks() -> list[int]
¶
Get indices of sink nodes (nodes with no outgoing edges).
get_global_optima_indices() -> list[int]
¶
compute_metrics(known_best: float | None = None) -> dict[str, Any]
¶
Compute LON metrics.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
known_best
|
float | None
|
Known global optimum value. If None, uses the best fitness found in the network. |
None
|
Returns:
| Type | Description |
|---|---|
dict[str, Any]
|
Dictionary containing: - n_optima: Number of local optima (vertices) - n_funnels: Number of funnels (sinks) - n_global_funnels: Number of funnels at global optimum - neutral: Proportion of nodes with equal-fitness connections - strength: Proportion of incoming strength to global optima |
Source code in src/lonpy/lon.py
CMLON
dataclass
¶
Compressed Monotonic Local Optima Network (CMLON).
CMLON contracts nodes with equal fitness that are connected, creating a compressed representation of the fitness landscape.
Attributes:
| Name | Type | Description |
|---|---|---|
graph |
Graph
|
The underlying igraph Graph object. |
best_fitness |
float | None
|
The best (minimum) fitness value. |
source_lon |
LON | None
|
Reference to the original LON (optional). |
Source code in src/lonpy/lon.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 | |
n_vertices: int
property
¶
Number of vertices in CMLON.
n_edges: int
property
¶
Number of edges in CMLON.
vertex_fitness: list[float]
property
¶
List of vertex fitness values.
vertex_count: list[int]
property
¶
List of vertex counts (contracted nodes).
from_lon(lon: LON) -> CMLON
classmethod
¶
Create CMLON from LON by contracting neutral nodes.
The compression process: 1. Mark edges as "improving" (f2 < f1) or "equal" (f2 == f1) 2. Create subgraph of equal-fitness edges 3. Find weakly connected components 4. Contract vertices using component membership 5. Combine parallel edge weights
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
lon
|
LON
|
Source LON instance. |
required |
Returns:
| Type | Description |
|---|---|
CMLON
|
CMLON with contracted neutral components. |
Source code in src/lonpy/lon.py
get_sinks() -> list[int]
¶
Get indices of sink nodes (nodes with no outgoing edges).
get_global_sinks() -> list[int]
¶
Get indices of global sinks (sinks at best fitness).
get_local_sinks() -> list[int]
¶
Get indices of local sinks (sinks not at best fitness).
Source code in src/lonpy/lon.py
compute_metrics(known_best: float | None = None) -> dict[str, Any]
¶
Compute CMLON metrics.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
known_best
|
float | None
|
Known global optimum value. If None, uses the best fitness found in the network. |
None
|
Returns:
| Type | Description |
|---|---|
dict[str, Any]
|
Dictionary containing: - n_optima: Number of optima in CMLON - n_funnels: Number of funnels (sinks) - n_global_funnels: Number of funnels at global optimum - neutral: Proportion of contracted nodes - strength: Ratio of incoming strength to global vs local sinks - global_funnel_proportion: Proportion of nodes that can reach a global optimum |